- 1 A bag contains 8 balls.
 - 3 are red and 5 are blue.
 - 2 balls are taken from the bag at random without replacement.
- 1 (a) Write down the probability that there is at least 1 red ball still in the bag.

[1 mark]

		<u> </u>	\
Answer	•		,

Work out the probability that there are at least 2 red balls still in the bag. 1 (b)

[3 marks]

$$3R : \frac{5}{8} \times \frac{4}{7} : \frac{20}{56}$$

$$2R = \frac{3}{8} \times \frac{5}{7} \text{ or } \frac{5}{8} \times \frac{3}{7}$$

$$\frac{20}{56} + 2\left(\frac{15}{56}\right)$$

Answer

- **2** Zoe and Amy are playing a board game.
 - They each have one disc and take turns to roll a fair, ordinary dice.
 - The player moves their disc **clockwise** the number of spaces shown on the dice.
 - The winner is the first player whose disc is on HOME at the end of a turn.

Here is the board after Amy's turn.

Work out the probability that Zoe wins within her next two turns.

[4 marks]

$$P(3) = \frac{1}{6} \left(1 \right)$$

$$P(1,2) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$

$$P(2,1) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$

$$= \frac{1}{6} + \frac{1}{36} + \frac{1}{36} = \frac{8 \div 4}{36 \div 4} = \frac{2}{9}$$

Answer
$$\frac{2}{q}$$

3 Circle the expression that means the probability of A and **not** B.

[1 mark]

P(A' U B)

P(A U B')

 $P(A' \cap B)$

4 Here are three sets of cards.

In a game, a player has two options.

Option 1 Pick two cards from Set A

Option 2 Pick one card from Set B and pick one card from Set C

The cards are picked at random.

The player wins if the total of their two cards is exactly 10

Which option gives a better chance of winning?

Show working to support your answer.

Option 1:
$$\frac{3}{8} \times \frac{2}{7} = \frac{6}{56}$$
 [4 marks]

Option 2:
$$\frac{1}{7} \times \frac{1}{4} + \frac{1}{7} \times \frac{1}{4}$$

$$\frac{1 \times 4}{14 \times 4} = \frac{4}{56}$$

5 There should be a train leaving a station every hour from 7 am No trains leave early.

P(the **first train** leaves on time) = 0.9

For all the other trains,

if the previous train did leave on time, P(this train leaves on time) = 0.8 if the previous train did **not** leave on time, P(this train leaves on time) = 0.65

5 (a) Work out P(the first three trains leave on time)

[2 marks]

Answer _____

5 (b) The 2 pm train does **not** leave on time.

Work out P(exactly one of the next two trains does **not** leave on time)

[3 marks]

(late, on time) =
$$0.35 \times 0.65 = 0.2275$$

Answer ______